Random walks on partite complexes

Izhar Oppenheim

Ben-Gurion University

October 28, 2021

Joint work with Zohar Grinbaum-Reizis

Terminology and notation

Denote X to be a pure n-dim. simplicial complex, connected + connected links. Define $C^k(X) = \{\phi : X(k) \to \mathbb{R}\}$, e.g., $C^0(X)$ are functions from vertices of X to \mathbb{R} .

Terminology and notation

Denote X to be a pure n-dim. simplicial complex, connected + connected links. Define $C^k(X) = \{\phi : X(k) \to \mathbb{R}\}$, e.g., $C^0(X)$ are functions from vertices of X to \mathbb{R} .

Define the following inner-product on $C^k(X)$:

$$\langle \phi, \psi \rangle = \sum_{\eta \in X(k)} w(\eta) \phi(\eta) \psi(\eta),$$

where w is a weight function which "takes into account" the higher dimensional structure (explicitly,

$$w(\tau) = (n-k)! \sum_{\sigma \in X(n), \tau \subseteq \sigma} w(\sigma), \ \forall \tau \in X(k)$$
.

Up and down operators

- Up $k \nearrow l$ step (l > k): For $\tau \in X(k)$ choose $\eta \in X(l)$ such that $\tau \subseteq \eta$ at random (according to the weight function w). Denote $U_{k \nearrow l} : C^k(X) \to C^l(X)$.
- ② Down $I \searrow k$ step (I > k): For $\eta \in X(I)$ choose at random $\tau' \in X(k)$ such that $\tau' \subseteq \eta$. Denote $D_{I \nearrow k} : C^I(X) \to C^k(X)$.

Random walks on simplicial complexes

Operators of the form $D_{I\nearrow k}U_{k\nearrow l}:C^k(X)\to C^k(X)$ or $U_{k\nearrow l}D_{I\nearrow k}:C^l(X)\to C^l(X)$ are averaging operators corresponding to random walks (with the same non-trivial spectrum).

Random walks on simplicial complexes

Operators of the form $D_{I\nearrow k}U_{k\nearrow l}:C^k(X)\to C^k(X)$ or $U_{k\nearrow l}D_{I\nearrow k}:C^l(X)\to C^l(X)$ are averaging operators corresponding to random walks (with the same non-trivial spectrum).

Most studied:

- $D_{n\nearrow 0}U_{0\nearrow n}=$ the $\frac{1}{n+1}$ -lazy random walk on the 1-skeleton (For non-lazy, take $\frac{n+1}{n}(D_{n\nearrow 0}U_{0\nearrow n}-\frac{1}{n+1}I)$).
- $\bullet \ M_k = D_{k+1 \nearrow k} U_{k \nearrow k+1}$

Local spectral expanders

A graph is called

- (One sided) λ -expander connected + the spectrum of the rw is in $[-1,\lambda] \cup \{1\}$
- ② Two sided λ -expander connected + the spectrum of the rw is in $[-\lambda,\lambda] \cup \{1\}$

Local spectral expanders

A graph is called

- (One sided) λ -expander connected + the spectrum of the rw is in $[-1,\lambda] \cup \{1\}$
- ② Two sided λ -expander connected + the spectrum of the rw is in $[-\lambda,\lambda]\cup\{1\}$

A simplicial complex is called:

- ① (One sided) λ -local spectral expander all the links are connected + the spectrum of the rw in every links is in $[-1,\lambda] \cup \{1\}$
- ② Two sided λ -local spectral expander all the links are connected + the spectrum of the rw in every links is in $[-\lambda,\lambda]\cup\{1\}$

 Trickling down Theorem ([O. 2018]): Local spectral expansion can be deduced from expansion of 1 dim. links. Recently generalized by [Abdolazimi-Liu-Gharan].

- Trickling down Theorem ([O. 2018]): Local spectral expansion can be deduced from expansion of 1 dim. links. Recently generalized by [Abdolazimi-Liu-Gharan].
- M_k random walks ([Kaufman-Mass 2016], [Dikstein-Dinur-Filmus-Harsha 2018], [Kaufman-O. 2018], [Levi Alev-Lau 2020])
 - ① Local spectral expansion \Rightarrow a bound in the on second e.v. of M_k
 - ② Two sided local spectral expansion \Rightarrow e.v. $(\neq 0)$ of M_k are concentrated in strips around $\frac{k+1-j}{k+2}, j=-1,...,k$.

- Trickling down Theorem ([O. 2018]): Local spectral expansion can be deduced from expansion of 1 dim. links. Recently generalized by [Abdolazimi-Liu-Gharan].
- M_k random walks ([Kaufman-Mass 2016], [Dikstein-Dinur-Filmus-Harsha 2018], [Kaufman-O. 2018], [Levi Alev-Lau 2020])
 - **1** Local spectral expansion \Rightarrow a bound in the on second e.v. of M_k
 - ② Two sided local spectral expansion \Rightarrow e.v. $(\neq 0)$ of M_k are concentrated in strips around $\frac{k+1-j}{k+2}, j=-1,...,k$. The subspace $\text{Im}(U_{j\nearrow k})\cap \text{Im}(U_{j-1\nearrow k})^{\perp}$ is an approximate eigenspace for the strip around $\frac{k+1-j}{k+2}$.

- Trickling down Theorem ([O. 2018]): Local spectral expansion can be deduced from expansion of 1 dim. links. Recently generalized by [Abdolazimi-Liu-Gharan].
- M_k random walks ([Kaufman-Mass 2016], [Dikstein-Dinur-Filmus-Harsha 2018], [Kaufman-O. 2018], [Levi Alev-Lau 2020])
 - **1** Local spectral expansion \Rightarrow a bound in the on second e.v. of M_k
 - ② Two sided local spectral expansion \Rightarrow e.v. $(\neq 0)$ of M_k are concentrated in strips around $\frac{k+1-j}{k+2}, j=-1,...,k$. The subspace $\text{Im}(U_{j\nearrow k})\cap \text{Im}(U_{j-1\nearrow k})^{\perp}$ is an approximate eigenspace for the strip around $\frac{k+1-j}{k+2}$.
- More advanced machinery See Liu's and Anari's talks.

Decomposition for two sided local spectral expanders - [Kaufman-O. 2018]

The weighting implies that $U_{j-1\nearrow k}=U_{j\nearrow k}U_{j-1\nearrow j}$. Thus $\operatorname{Im}(U_{j-1\nearrow k})\subseteq\operatorname{Im}(U_{j\nearrow k})$ and

$$\operatorname{Im}(U_{k-1\nearrow k})^{\perp} \oplus \left(\operatorname{Im}(U_{k-1\nearrow k}) \cap \operatorname{Im}(U_{k-2\nearrow k})^{\perp}\right) \oplus \left(\operatorname{Im}(U_{k-2\nearrow k}) \cap \operatorname{Im}(U_{k-3\nearrow k})^{\perp}\right) \oplus \dots$$

is an orthogonal decomposition of $C^k(X)$.

Decomposition for two sided local spectral expanders - [Kaufman-O. 2018]

The weighting implies that $U_{j-1\nearrow k}=U_{j\nearrow k}U_{j-1\nearrow j}$. Thus $\operatorname{Im}(U_{j-1\nearrow k})\subseteq\operatorname{Im}(U_{j\nearrow k})$ and

$$\operatorname{Im}(U_{k-1\nearrow k})^{\perp} \oplus \left(\operatorname{Im}(U_{k-1\nearrow k}) \cap \operatorname{Im}(U_{k-2\nearrow k})^{\perp}\right) \oplus \left(\operatorname{Im}(U_{k-2\nearrow k}) \cap \operatorname{Im}(U_{k-3\nearrow k})^{\perp}\right) \oplus \dots$$

is an orthogonal decomposition of $C^k(X)$.

For X that is a two-sided λ -local spectral expander (λ small), the following holds: For every $\phi \in \text{Im}(U_{j\nearrow k}) \cap \text{Im}(U_{j-1\nearrow k})^{\perp}$, $\|M_k\phi - \frac{k+1-j}{k+2}\phi\| \leq \varepsilon(j,k,\lambda)\|\phi\|$.

Problem with the assumption of two-sided spectral gap in the links

In many examples the links of dimension 1 are bipartite graphs:

- Ramanujan complexes
- Quotients of buildings
- Coset complexes (Kaufman-O., Friedgut-Iluz, O'Donnell-Pratt)

Problem with the assumption of two-sided spectral gap in the links

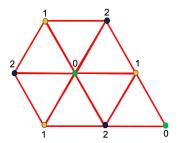
In many examples the links of dimension 1 are bipartite graphs:

- Ramanujan complexes
- Quotients of buildings
- Coset complexes (Kaufman-O., Friedgut-Iluz, O'Donnell-Pratt)

Can be circumvented considering \sqrt{n} -skeletons (but this feels like cheating)

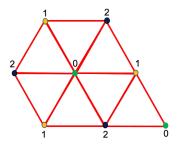
Partite simplicial complexes

An n-dim. simplicial complex X is called partite or colorable if its vertex set can be partitioned into n+1 sets $S_0, ..., S_n$ such that every $\sigma \in X(n)$ has a vertex in each of the sets $S_0, ..., S_n$.



Partite simplicial complexes

An *n*-dim. simplicial complex X is called *partite* or *colorable* if its vertex set can be partitioned into n + 1 sets $S_0, ..., S_n$ such that every $\sigma \in X(n)$ has a vertex in each of the sets $S_0, ..., S_n$.



Define a type function on X: type $(\eta) = \{i : \eta \cap S_i \neq \emptyset\}$.

Partite decomposition (?)

For partite complexes, we have a finer decomposition of $C^n(X)$: For every $\nu \subseteq \{0,...,n\}$ define $(C^n(X))_{\nu}$ to be the subspace of $\phi \in C^n(X)$ such that

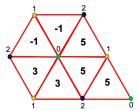
$$\forall \sigma, \sigma' \in X(n), \nu \subseteq \mathsf{type}(\sigma \cap \sigma') \Rightarrow \phi(\sigma) = \phi(\sigma').$$

Partite decomposition (?)

For partite complexes, we have a finer decomposition of $C^n(X)$: For every $\nu \subseteq \{0,...,n\}$ define $(C^n(X))_{\nu}$ to be the subspace of $\phi \in C^n(X)$ such that

$$\forall \sigma, \sigma' \in X(n), \nu \subseteq \mathsf{type}(\sigma \cap \sigma') \Rightarrow \phi(\sigma) = \phi(\sigma').$$

Example - $\phi \in (C^2(X))_{\{1\}}$:

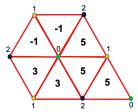


Partite decomposition (?)

For partite complexes, we have a finer decomposition of $C^n(X)$: For every $\nu \subseteq \{0,...,n\}$ define $(C^n(X))_{\nu}$ to be the subspace of $\phi \in C^n(X)$ such that

$$\forall \sigma, \sigma' \in X(n), \nu \subseteq \mathsf{type}(\sigma \cap \sigma') \Rightarrow \phi(\sigma) = \phi(\sigma').$$

Example - $\phi \in (C^2(X))_{\{1\}}$:



Note that $(C^n(X))_{\nu}$ is actually applying $U_{k \nearrow n}$ by type.

Partite decomposition (2) (?)

We note that if $\nu' \subseteq \nu$, then $(C^n(X))_{\nu'} \subseteq (C^n(X))_{\nu}$ and as in [K-O], we want to mod-out the parts of the space "coming from below".

Partite decomposition (2) (?)

We note that if $\nu' \subseteq \nu$, then $(C^n(X))_{\nu'} \subseteq (C^n(X))_{\nu}$ and as in [K-O], we want to mod-out the parts of the space "coming from below". Define

$$(C^n(X))^{\nu}=(C^n(X))_{\nu}\cap\left(\bigcap_{\nu'\subsetneq\nu}((C^n(X))_{\nu'})^{\perp}\right).$$

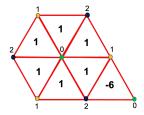
Partite decomposition (2) (?)

We note that if $\nu' \subseteq \nu$, then $(C^n(X))_{\nu'} \subseteq (C^n(X))_{\nu}$ and as in [K-O], we want to mod-out the parts of the space "coming from below". Define

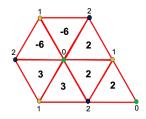
$$(C^n(X))^{\nu}=(C^n(X))_{\nu}\cap\left(\bigcap_{\nu'\subsetneq\nu}((C^n(X))_{\nu'})^{\perp}\right).$$

However, note that two spaces $(C^n(X))^{\nu_1}, (C^n(X))^{\nu_2}$ need not be orthogonal if $\nu_1 \nsubseteq \nu_2$ or $\nu_2 \nsubseteq \nu_1$. Thus, we do not know if $C^n(X) = \bigoplus (C^n(X))^{\nu}$

Example: $\phi \in (C^2(X))^{\{0\}}$



$$\psi \in (C^2(X))^{\{1\}}$$

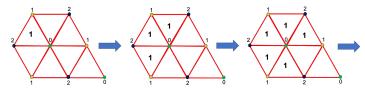


The spaces $C^n(X)_{\nu}$ as intersections

By our connectivity assumptions: For every $\nu \subsetneq \{0,...,n\}, |\nu| < n$ it holds that

$$C^n(X)_{\nu} = \bigcap_{\nu',\nu \subseteq \nu' \subseteq \{0,\ldots,n\}} C^n(X)_{\nu}$$

Example: $C^2(X)_{\{0\}} = C^2(X)_{\{0,1\}} \cap C^2(X)_{\{0,2\}}$

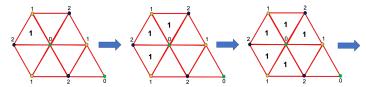


The spaces $C^n(X)_{\nu}$ as intersections

By our connectivity assumptions: For every $\nu \subsetneq \{0,...,n\}, |\nu| < n$ it holds that

$$C^{n}(X)_{\nu} = \bigcap_{\nu',\nu \subseteq \nu' \subseteq \{0,\dots,n\}} C^{n}(X)_{\nu'}$$

Example: $C^2(X)_{\{0\}} = C^2(X)_{\{0,1\}} \cap C^2(X)_{\{0,2\}}$



Actually,

$$C^n(X)_{\nu} = \bigcap_{\nu',\nu \subseteq \nu' \subseteq \{0,\ldots,n\}, |\nu'|=n} C^n(X)_{\nu'}$$

Restating the decomposition problem

Denote the subspaces

$$V_i = C^n(X)_{\{0,\ldots,n\}\setminus\{i\}}.$$

Thus every $C^n(X)_{\nu}$, with $\nu \subseteq \{0,...,n\}$ we have

$$C^n(X)_{\nu} = \bigcap_{i \notin \nu} V_i.$$

Restating the decomposition problem (2)

Let \mathcal{H} be a Hilbert space and $V_0, ..., V_n$ be closed subspaces. Denote for every $\tau \subseteq \{0, ..., n\}$,

$$\mathcal{H}_{\tau} = egin{cases} \bigcap_{i
otin au} V_i & au
eq \{0,...,n\} \ \mathcal{H} & au = \{0,...,n\} \end{cases},$$

Restating the decomposition problem (2)

Let \mathcal{H} be a Hilbert space and $V_0, ..., V_n$ be closed subspaces. Denote for every $\tau \subseteq \{0, ..., n\}$,

$$\mathcal{H}_{\tau} = \begin{cases} \bigcap_{i \notin \tau} V_i & \tau \neq \{0, ..., n\} \\ \mathcal{H} & \tau = \{0, ..., n\} \end{cases}$$

and

$$\mathcal{H}^{ au} = \mathcal{H}_{ au} \cap \bigcap_{\eta \subsetneq au} \mathcal{H}_{\eta}^{\perp}.$$

Restating the decomposition problem (2)

Let \mathcal{H} be a Hilbert space and $V_0, ..., V_n$ be closed subspaces. Denote for every $\tau \subseteq \{0, ..., n\}$,

$$\mathcal{H}_{ au} = egin{cases} \bigcap_{i
otin au} V_i & au
eq \{0,...,n\} \ \mathcal{H} & au = \{0,...,n\} \end{cases},$$

and

$$\mathcal{H}^{ au} = \mathcal{H}_{ au} \cap \bigcap_{\eta \subseteq au} \mathcal{H}_{\eta}^{\perp}.$$

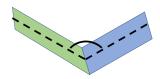
What criterion implies that $\mathcal{H}=\bigoplus_{\tau\subseteq\{0,\ldots,n\}}\mathcal{H}^{ au}$?

Angles between subspaces

Definition

Let $V_1, V_2 \subseteq \mathcal{H}$ closed subspaces. Assume that $V_1 \nsubseteq V_2, V_2 \nsubseteq V_1$. Then the (cosine of) the angle between V_1, V_2 is defined as:

$$\cos(\angle(V_1, V_2)) = \sup\{|\langle x_1, x_2 \rangle| : x_i \in V_i \cap (V_1 \cap V_2)^{\perp}, ||x_i|| = 1\}.$$

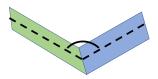


Angles between subspaces

Definition

Let $V_1, V_2 \subseteq \mathcal{H}$ closed subspaces. Assume that $V_1 \nsubseteq V_2, V_2 \nsubseteq V_1$. Then the (cosine of) the angle between V_1, V_2 is defined as:

$$\cos(\angle(V_1, V_2)) = \sup\{|\langle x_1, x_2 \rangle| : x_i \in V_i \cap (V_1 \cap V_2)^{\perp}, ||x_i|| = 1\}.$$



Fact: If P_V denotes the orthogonal projection on V, then

$$\cos(\angle(V_1, V_2)) = \|P_{V_1} P_{V_2} - P_{V_1 \cap V_2}\|.$$

Almost orthogonality implies decomposition

For subspaces $V_0, ..., V_n \subseteq \mathcal{H}$, if $\cos(\angle(V_i, V_j)) = 0$ for every $0 \le i < j \le n$, then the subspaces $\mathcal{H}^{\tau}, \tau \subseteq \{0, ..., n\}$ are all pairwise orthogonal and the decomposition is obvious.

Almost orthogonality implies decomposition

For subspaces $V_0, ..., V_n \subseteq \mathcal{H}$, if $\cos(\angle(V_i, V_j)) = 0$ for every $0 \le i < j \le n$, then the subspaces $\mathcal{H}^{\tau}, \tau \subseteq \{0, ..., n\}$ are all pairwise orthogonal and the decomposition is obvious.

Theorem (Dymara and Januszkiewicz, 02')

If the subspaces V_i are "almost orthogonal", we will still get a decomposition.

Almost orthogonality implies decomposition

For subspaces $V_0, ..., V_n \subseteq \mathcal{H}$, if $\cos(\angle(V_i, V_j)) = 0$ for every $0 \le i < j \le n$, then the subspaces $\mathcal{H}^{\tau}, \tau \subseteq \{0, ..., n\}$ are all pairwise orthogonal and the decomposition is obvious.

Theorem (Dymara and Januszkiewicz, 02')

If the subspaces V_i are "almost orthogonal", we will still get a decomposition. In [DJ], the condition was that for every 0 < i < n.

$$\cos(\angle(V_i,V_j))<\frac{13}{28^n}.$$

Almost orthogonality implies decomposition

For subspaces $V_0, ..., V_n \subseteq \mathcal{H}$, if $\cos(\angle(V_i, V_j)) = 0$ for every $0 \le i < j \le n$, then the subspaces $\mathcal{H}^{\tau}, \tau \subseteq \{0, ..., n\}$ are all pairwise orthogonal and the decomposition is obvious.

Theorem (Dymara and Januszkiewicz, 02')

If the subspaces V_i are "almost orthogonal", we will still get a decomposition. In [DJ], the condition was that for every $0 \le i < j \le n$,

$$\cos(\angle(V_i,V_j))<\frac{13}{28^n}.$$

Remark: The [DJ] result actually talked about vanishing of cohomology (which is connected, but ignored in this talk) .

Decomposition through angles bound - two subspaces

For two subspace V_0 , V_1 , it is enough to have $\cos(\angle(V_0, V_1)) \le \alpha < 1$ (or equivalently, $\angle(V_0, V_1) > 0$) to deduce a decomposition:

$$\mathcal{H}^{\emptyset} = V_0 \cap V_1, \mathcal{H}^{\{0,1\}} = (V_0 + V_1)^{\perp}, \mathcal{H}^{\{i\}} = V_{i+1} \cap (V_0 \cap V_1)^{\perp}.$$

Decomposition through angles bound - two subspaces

For two subspace V_0 , V_1 , it is enough to have $\cos(\angle(V_0, V_1)) \le \alpha < 1$ (or equivalently, $\angle(V_0, V_1) > 0$) to deduce a decomposition:

$$\mathcal{H}^{\emptyset} = V_0 \cap V_1, \mathcal{H}^{\{0,1\}} = (V_0 + V_1)^{\perp}, \mathcal{H}^{\{i\}} = V_{i+1} \cap (V_0 \cap V_1)^{\perp}.$$

$$||x^{\emptyset} + x^{\{0\}} + x^{\{1\}} + x^{\{0,1\}}||^{2} \ge ||x^{\{0,1\}}||^{2} + ||x^{\emptyset}||^{2} + ||x^{\{0\}}||^{2} + ||x^{\{1\}}||^{2} - 2|\langle x^{\{0\}}, x^{\{1\}} \rangle| \ge ||x^{\{0,1\}}||^{2} + ||x^{\emptyset}||^{2} + (2 - 2\alpha)(||x^{\{0\}}||^{2} + ||x^{\{1\}}||^{2}).$$

Decomposition through angles bound - two subspaces

For two subspace V_0 , V_1 , it is enough to have $\cos(\angle(V_0, V_1)) \le \alpha < 1$ (or equivalently, $\angle(V_0, V_1) > 0$) to deduce a decomposition:

$$\mathcal{H}^{\emptyset} = V_0 \cap V_1, \mathcal{H}^{\{0,1\}} = (V_0 + V_1)^{\perp}, \mathcal{H}^{\{i\}} = V_{i+1} \cap (V_0 \cap V_1)^{\perp}.$$

$$\begin{aligned} \|x^{\emptyset} + x^{\{0\}} + x^{\{1\}} + x^{\{0,1\}}\|^{2} &\geq \\ \|x^{\{0,1\}}\|^{2} + \|x^{\emptyset}\|^{2} + \|x^{\{0\}}\|^{2} + \|x^{\{1\}}\|^{2} - 2|\langle x^{\{0\}}, x^{\{1\}}\rangle| &\geq \\ \|x^{\{0,1\}}\|^{2} + \|x^{\emptyset}\|^{2} + (2 - 2\alpha)(\|x^{\{0\}}\|^{2} + \|x^{\{1\}}\|^{2}). \end{aligned}$$

So $x^{\emptyset} + x^{\{0\}} + x^{\{1\}} + x^{\{0,1\}} = 0$ implies that all the summands are 0.

Decomposition through angles bound - intuition

Consider V_0 , V_1 , V_2 two-dimensional subspaces in \mathbb{R}^3 and consider the spherical triangle that arises from their intersection with the unit sphere:

One can think about $\angle(V_0, V_1, V_2)$ as the area of this triangle and then our guess for the criterion to the decomposition is $\angle(V_0, V_1, V_2) > 0$.

Decomposition through angles bound - intuition (2)

Fact: a triangle with angles α, β, γ is spherical iff the matrix

$$\begin{pmatrix} 1 & -\cos(\alpha) & -\cos(\beta) \\ -\cos(\alpha) & 1 & -\cos(\gamma) \\ -\cos(\beta) & -\cos(\gamma) & 1 \end{pmatrix}$$

is positive definite and its' determinant yields a bound on the spherical area of the triangle.

Decomposition through angles bound - intuition (3)

Dihedral angle in an n-simplex is an angle between two n-1 faces.

Decomposition through angles bound - intuition (3)

Dihedral angle in an n-simplex is an angle between two n-1 faces.

Fact: An *n*-simplex with dihedral angles $\{\alpha_{i,j}: 0 \leq i, j \leq n\}$ is spherical iff the matrix

$$A_{i,j} = \begin{cases} 1 & i = j \\ -\cos(\alpha_{i,j}) & i \neq j \end{cases}$$

is positive definite and its' determinant yields a lower bound on the spherical volume of the simplex.

Decomposition Theorem

Theorem (Grinbaum-Reizis and Oppenheim 20')

Let $V_0, ..., V_n \subseteq \mathcal{H}$ be closed subspaces. If the matrix $A = A(V_0, ..., V_n)$ defined as

$$A_{i,j} = \begin{cases} 1 & i = j \\ -\cos(\angle(V_i, V_j)) & i \neq j \end{cases}$$

is positive definite, then $\mathcal{H} = \bigoplus_{\tau \subseteq \{0,\dots,n\}} \mathcal{H}^{\tau}$. Moreover, the subspaces in the decomposition become "more orthogonal" as the smallest eigenvalue of A approaches 1 (equivalently as the determinant approaches 1).

Remark: We heavily use ideas of Kassabov.

Decomposition Theorem - back to simplicial complexes

Recall that

$$V_i = C^n(X)_{\{0,\ldots,n\}\setminus\{i\}}.$$

Denote

$$\lambda_{i,j} = \max_{\tau \in X(n-2), \text{type}(\tau) = \{0, \dots, n\} \setminus \{i,j\}} \left(\text{Second e.v. of rw on } X_\tau \right).$$

Decomposition Theorem - back to simplicial complexes

Recall that

$$V_i = C^n(X)_{\{0,\ldots,n\}\setminus\{i\}}.$$

Denote

$$\lambda_{i,j} = \max_{\tau \in X(n-2), \mathsf{type}(\tau) = \{0,\dots,n\} \setminus \{i,j\}} \left(\mathsf{Second e.v. of rw on } X_\tau\right).$$

Claim:
$$cos(\angle(V_i, V_j)) = \lambda_{i,j}$$
.

Decomposition Theorem - back to simplicial complexes (2)

Define A(X) to be the $(n+1) \times (n+1)$ matrix (indexed by 0, ..., n) as

$$A(X)_{i,j} = \begin{cases} 1 & i = j \\ -\lambda_{i,j} & i \neq j \end{cases}.$$

By the decomposition Theorem: if A(X) is positive definite, then

$$C^n(X) = \bigoplus_{\nu \subseteq \{0,\dots,n\}} (C^n(X))^{\nu}$$

and this decomposition become "more orthogonal" as the smallest eigenvalue of A(X) approaches 1.

Example of A(X) for X Ramanujan

Let X be a partite Ramanujan complexes of thickness q+1, then

As in the non-partite case, when considering $U_{k\nearrow n}D_{n\searrow k}$ walks, the decomposition will lead to strips in the spectra of walks.

As in the non-partite case, when considering $U_{k\nearrow n}D_{n\searrow k}$ walks, the decomposition will lead to strips in the spectra of walks.

Below, we will analyse the walk $U_{n-1\nearrow n}D_{n\searrow n-1}$ and explain the following: Considering the decomposition

$$C^n(X) = \bigoplus_{\nu \subseteq \{0,\ldots,n\}} (C^n(X))^{\nu}$$

As in the non-partite case, when considering $U_{k\nearrow n}D_{n\searrow k}$ walks, the decomposition will lead to strips in the spectra of walks.

Below, we will analyse the walk $U_{n-1\nearrow n}D_{n\searrow n-1}$ and explain the following: Considering the decomposition

$$C^n(X) = \bigoplus_{\nu \subseteq \{0,\ldots,n\}} (C^n(X))^{\nu}$$

• Each $(C^n(X))^{\nu}$ gives a strip in the spectrum of the form $\left[\frac{n+1-|\nu|}{n+1}-\varepsilon_{\nu},\frac{n+1-|\nu|}{n+1}+\varepsilon_{\nu}\right]$

As in the non-partite case, when considering $U_{k\nearrow n}D_{n\searrow k}$ walks, the decomposition will lead to strips in the spectra of walks.

Below, we will analyse the walk $U_{n-1\nearrow n}D_{n\searrow n-1}$ and explain the following: Considering the decomposition

$$C^n(X) = \bigoplus_{\nu \subseteq \{0,\ldots,n\}} (C^n(X))^{\nu}$$

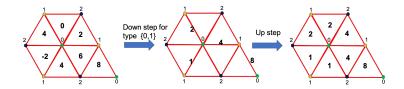
- Each $(C^n(X))^{\nu}$ gives a strip in the spectrum of the form $\left[\frac{n+1-|\nu|}{n+1}-\varepsilon_{\nu},\frac{n+1-|\nu|}{n+1}+\varepsilon_{\nu}\right]$
- **②** For each ν , ε_{ν} above can be bounded using the matrix A(X) (using angle considerations again).

The $P_{C^n(X)_{\nu}}$ projection

We should think about the $P_{C^n(X)_{\nu}}$ projection as doing a down-walk for type ν and then doing an up walk.

The $P_{C^n(X)_{\nu}}$ projection

We should think about the $P_{C^n(X)_{\nu}}$ projection as doing a down-walk for type ν and then doing an up walk. Example $P_{C^n(X)_{\{0,1\}}}$:



The $U_{n-1\nearrow n}D_{n\searrow n-1}$ walk

For $\phi \in C^n(X)$, the $U_{n-1\nearrow n}D_{n\searrow n-1}$ can be defined as following

$$U_{n-1\nearrow n}D_{n\searrow n-1}\phi=\frac{1}{n+1}\sum_{\nu\subseteq\{0,\ldots,n\},|\nu|=n}P_{C^n(X)_\nu}\phi,$$

where $P_{C^n(X)_{\nu}}$ is the orthogonal projection on $C^n(X)_{\nu}$.

Note that for $\phi \in C^n(X)^{\tau}$ for $\tau \subsetneq \{0,...,n\}$, the following holds for every ν with $|\nu| = n$:

Note that for $\phi \in C^n(X)^{\tau}$ for $\tau \subsetneq \{0,...,n\}$, the following holds for every ν with $|\nu| = n$:

• If $\tau \subseteq \nu$, then $P_{C^n(X)_{\nu}}\phi = \phi$ (recall $C^n(X)_{\tau} \subseteq C^n(X)_{\nu}$).

Note that for $\phi \in C^n(X)^{\tau}$ for $\tau \subsetneq \{0,...,n\}$, the following holds for every ν with $|\nu| = n$:

- If $\tau \subseteq \nu$, then $P_{C^n(X)_{\nu}}\phi = \phi$ (recall $C^n(X)_{\tau} \subseteq C^n(X)_{\nu}$).
- If $\tau \not\subseteq \nu$, then

$$\|P_{C^n(X)_{\nu}}\phi\| \leq \cos(\angle(C^n(X)_{\nu}, C^n(X)_{\tau}))\|\phi\| \text{ (Recall } C^n(X)^{\tau} \subseteq (C^n(X)_{\tau} \cap (C^n(X)_{\nu \cap \tau})^{\perp})).$$

Note that for $\phi \in C^n(X)^{\tau}$ for $\tau \subsetneq \{0,...,n\}$, the following holds for every ν with $|\nu| = n$:

- If $\tau \subseteq \nu$, then $P_{C^n(X)_{\nu}}\phi = \phi$ (recall $C^n(X)_{\tau} \subseteq C^n(X)_{\nu}$).
- If $\tau \nsubseteq \nu$, then $\|P_{C^n(X)_{\nu}}\phi\| \leq \cos(\angle(C^n(X)_{\nu}, C^n(X)_{\tau}))\|\phi\|$ (Recall $C^n(X)^{\tau} \subseteq (C^n(X)_{\tau} \cap (C^n(X)_{\nu \cap \tau})^{\perp})$).

Thus for $\phi \in C^n(X)^{\tau}$,

$$rac{1}{n+1} \sum_{
u \subseteq \{0,...,n\}, |
u|=n} P_{C^n(X)_{
u}} \phi = rac{n+1-|
u|}{n+1} \phi + rac{1}{n+1} \sum_{
u, |
u|=n,
u \not\subseteq
u} P_{C^n(X)_{
u}} \phi$$

It follows that

$$\left\| \frac{1}{n+1} \sum_{\nu \subseteq \{0,\dots,n\}, |\nu| = n} P_{C^n(X)_{\nu}} \phi - \frac{n+1-|\tau|}{n+1} \phi \right\|^2 \le \left(\frac{1}{n+1} \sum_{\nu, |\nu| = n, \tau \not\subseteq \nu} \cos(\angle(C^n(X)_{\nu}, C^n(X)_{\tau})) \right)^2 \|\phi\|^2$$

It follows that

$$\left\| \frac{1}{n+1} \sum_{\nu \subsetneq \{0,\dots,n\}, |\nu| = n} P_{C^n(X)_{\nu}} \phi - \frac{n+1-|\tau|}{n+1} \phi \right\|^2 \le \left(\frac{1}{n+1} \sum_{\nu, |\nu| = n, \tau \not\subseteq \nu} \cos(\angle (C^n(X)_{\nu}, C^n(X)_{\tau})) \right)^2 \|\phi\|^2$$

Recall that for ν with $|\nu|=n$, there is $C^n(X)_{\nu}=V_i$ and that $C^n(X)_{\tau}=\bigcap_{j\in\{0,\dots,n\}\setminus\tau}V_j$.

It follows that

$$\left\| \frac{1}{n+1} \sum_{\nu \subsetneq \{0,\dots,n\}, |\nu| = n} P_{C^n(X)_{\nu}} \phi - \frac{n+1-|\tau|}{n+1} \phi \right\|^2 \le \left(\frac{1}{n+1} \sum_{\nu, |\nu| = n, \tau \not\subseteq \nu} \cos(\angle (C^n(X)_{\nu}, C^n(X)_{\tau})) \right)^2 \|\phi\|^2$$

Recall that for ν with $|\nu|=n$, there is $C^n(X)_{\nu}=V_i$ and that $C^n(X)_{\tau}=\bigcap_{j\in\{0,\dots,n\}\setminus\tau}V_j$.

Question: How to bound $\cos(\angle(V_0, V_1 \cap ... \cap V_k))$ using $\cos(\angle(V_i, V_i))$?

$sin(\angle(V_0,...,V_k))$

Recall $A = A(V_0, ..., V_n)$ defined as

$$A_{i,j} = \begin{cases} 1 & i = j \\ -\cos(\angle(V_i, V_j)) & i \neq j \end{cases}.$$

$\sin(\angle(V_0,...,V_k))$

Recall $A = A(V_0, ..., V_n)$ defined as

$$A_{i,j} = \begin{cases} 1 & i = j \\ -\cos(\angle(V_i, V_j)) & i \neq j \end{cases}.$$

Denote

$$\sin^2(\angle(V_0,...,V_k)) = \det(A(V_0,...,A_k)).$$

$sin(\angle(V_0,...,V_k))$

Recall $A = A(V_0, ..., V_n)$ defined as

$$A_{i,j} = \begin{cases} 1 & i = j \\ -\cos(\angle(V_i, V_j)) & i \neq j \end{cases}.$$

Denote

$$\sin^2(\angle(V_0,...,V_k)) = \det(A(V_0,...,A_k)).$$

Justification for the notation:

$$\sin^2(\angle(V_0, V_1)) = 1 - \cos^2(\angle(V_0, V_1)).$$

$\cos(\angle(V_0, V_1 \cap ... \cap V_k))$ bound Theorem

Theorem (Grinbaum-Reizis and Oppenheim 2021)

For closed subspaces $V_0, ..., V_k$ in a Hilbert space, it holds that

$$\sin^2(\angle(V_0, V_1 \cap ... \cap V_k)) \ge \frac{\sin^2(\angle(V_0, V_1, ..., V_k))}{\sin^2(\angle(V_1, ..., V_k))}.$$

In particular,

$$\cos(\angle(V_0, V_1 \cap ... \cap V_k)) \leq \sqrt{1 - \frac{\sin^2(\angle(V_0, V_1, ..., V_k))}{\sin^2(\angle(V_1, ..., V_k))}}.$$

Example in Ramanujan complexes

As noted before, for X that is a partite Ramanujan complex, we know the matrix A(X).

Example in Ramanujan complexes (2)

First example - the strip $\left[\frac{1}{n+1}-\varepsilon,\frac{1}{n+1}+\varepsilon\right]$ is achieved for $\phi\in C^n(X)^{\tau}$ with $|\tau|=n$. In that case

$$\varepsilon \leq \left(\frac{1}{n+1} \sum_{\nu, |\nu| = n, \tau \not\subseteq \nu} \cos(\angle(C^n(X)_{\nu}, C^n(X)_{\tau}))\right) = \frac{2}{n+1} \frac{\sqrt{q}}{q+1}.$$

Example in Ramanujan complexes (3)

Second example - the strip $\left[\frac{n}{n+1}-\varepsilon,\frac{n}{n+1}+\varepsilon\right]$ is achieved for $\phi\in C^n(X)^{\{i\}}$. In that case

$$\varepsilon \leq \left(\frac{1}{n+1}\cos(C^{n}(X)_{\{0,\dots,n\}\setminus\{i\}},C^{n}(X)_{\{i\}})\right) \leq \frac{2}{n+1}\frac{\sqrt{q}}{q+1}\left(\frac{Ax^{n-1}}{Ax^{n-1}+By^{n-1}}x+\frac{By^{n-1}}{Ax^{n-1}+By^{n-1}}y\right),$$

where A, B, x, y can be computed explicitly - all are positive and x, y < 1.

Example in Ramanujan complexes (3)

Second example - the strip $\left[\frac{n}{n+1}-\varepsilon,\frac{n}{n+1}+\varepsilon\right]$ is achieved for $\phi\in C^n(X)^{\{i\}}$. In that case

$$\varepsilon \leq \left(\frac{1}{n+1}\cos(C^{n}(X)_{\{0,\dots,n\}\setminus\{i\}},C^{n}(X)_{\{i\}})\right) \leq \frac{2}{n+1}\frac{\sqrt{q}}{q+1}\left(\frac{Ax^{n-1}}{Ax^{n-1}+By^{n-1}}x+\frac{By^{n-1}}{Ax^{n-1}+By^{n-1}}y\right),$$

where A, B, x, y can be computed explicitly - all are positive and x, y < 1.

Similar bounds for the [Kaufman-O.] construction.

Concluding remarks

• In the case n = 2, our analysis of Ramanujan complexes is not tight by [Golubev-Parzanchevski]

Concluding remarks

- In the case n = 2, our analysis of Ramanujan complexes is not tight by [Golubev-Parzanchevski]
- Other examples of complexes with sparse A(X): quotients of buildings, O'Donnell-Pratt construction

Concluding remarks

- In the case n = 2, our analysis of Ramanujan complexes is not tight by [Golubev-Parzanchevski]
- Other examples of complexes with sparse A(X): quotients of buildings, O'Donnell-Pratt construction
- Work on other walks ongoing

Thank you for listening